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Objectives

* Provide a Method for Removing the Distortions Introduced by the
Non-ldealities of the Measurement Components.

* Increase the Frequency Range of the Measurement to Beyond Their
Nominal Bandwidth.

e Demonstrate a “Normalization” Feature that Allows Results from
Different Laboratories/Experiments to Be Directly Compared.

Background

Combines the Work of
e Walter
e PFI

* Smith
....Into One Integrated Digital Process.
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It Would Be Great If
All Test Labs Doing Similar Experiments
Used The Same
Transducers,
Cabling Systems,
Signal Conditioners,
Alias-Protection Devices and
Analog-to Digital Converters
and Data Acquisition Strategies

But They Don’t




So
Different Laboratories
Performing The
Same Experiment
Will Produce
Different Results

AND (For Additional DSP-Related Reasons)
Comparing Transient FEA To Physical Tests
Will Often Yield Different Results
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Why:
* Different Hardware Components
In The Signal Chain
Will Distort The Signal
In Different Ways
* Different Measurement Bandwidth
Will Produce Different Results




Fact:
Testing-System
Components
are

Not Ideal

Analysis

Analog-
Digital
Converter

‘ I Signal I Athi-
Conditioner/ Alias

Amplifier Filter

Data Acquisition System
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Fact: A Real Measurement System Fact:

: Transient FEA Models Also
Will Always Produce Produce A Distorted

A Distorted Version Of The Truth:
Version of the Truth Physics + Solution noise +
Our Objective. Modeling Approximations

Produce Improved Results With
Consistent Distortion (we cannot remove it all)
Between Tests/Laboratories (or Models and Tests)

Then, Results May Be Consistently Compared




History

In 1981 Walter Proposed Using
Convolution Functions to Correct For The Distortion

In 1991 Smith & Hollowell Proposed Limiting
The Frequency Response of Shock Events
With a Standard Low-Pass Filter.

In 2022 Gerber, Firth, & Szary
Offered an Analog Approach For The Compensation Of
Transducer Resonance Effects

In This Presentation, the Concepts are
Combined In A Digital Process to Produce a
Consistently Distorted, Standardized, Result




Fact: Our Measurement Systems
Do Not Tell Us The Truth
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More Detail
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Amplitude [G]

Amplitude [G]

A Few Signal Analysis Basics 1

response

FT = Fourier Transform

For a Linear System, the Magnitude and Phase (delay) Sysl’flem FT = Inverse Fourier Transform
difference between Input and Response Signals can be H = TF = Transter Function
Characterized With a Transfer Function. | ft

inpu

The Basic Calculation Is:
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We Do Assume That The Elements Of Our Measurement System Are Linear!
(and a few other assumptions to be noted shortly)




A Small Manipulation-Inverting The Process

Process Transfer Function
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Additional Calculation Details

* All components within the system respond linearly.

* Fourier Analysis imposes assumption of Periodic Signals in calcs.

* Many transient shocks approximate this assumption. - ( nj
= — k27—
* Calculations presented use the unscaled Fourier kernel only. Y, = Z y. €
* Plots shown are magnitude and phase of 1% half of the Fourier n=0

kernel coefficients (2"9 half are just mirror of complex conjugate).

* For Fourier inverse calculations, most software will require you to provide the full
spectrum, including the 2"¢ half of the coefficients.

* For typical shock/impact data, signals are short, so each spectrum is computed in 1 block
(there is no multi-block averaging and no windowing like done in vibration analysis).

* Calculations such as multiplication or division of spectra are computed with the underlying
spectrum’s complex coefficients (real + imaginary). The results of such math are complex
coefficients too!
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What Are The System Transfer Function Components?
...... And, Where Do They Come From?
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What Transfer Functions are Required.

..... And Where Do They Come From

Transducer Transfer Function
* Normally Provided By The Transducer Vendor,
BUT typically not up to the resonant frequency!
Cabling
* Normally a One Pole Filter With Cutoff Controlled By
the Cable Capacitance, The Transducer Output
Impedance, and Cable Resistance.
Signal Conditioning
* Normally a One or Two-Pole Filter Described by the
Manufacturer.
Anti-Alias Filter
* Characteristics From The Hardware Vendor
A/D Converter
* Characteristics From The Hardware Vendor

OR

May Be These
Should Be
Characterized

Experimentally
???




Special Calibration |¥ndevco Calibration Certificate

PCB Plezatronics of NG, Inc.
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Analytically Modeling The Data System Transfer Function
(Excluding the Transducer)

H(s) =
) =175 rC

R C are cable DC resistance
and Cond-to-Cond capacitance

By +Byz7'+ -+ B z7t

H =
@) 1+Az7+ -+ A4,z7L

A & B values are filter coefficients
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Notes:
* The Transducer is NOT represented here but it could be
included or kept separate.
* s isthe Laplace domain, z is the digital domain
e Ensure you understand which type of TF form you
are using. You evaluate them differently.
s—=>j-2-m-f
z—=>j-2-m-f/fs




Experimental Characterization Of The System Transfer Function
(Excluding Transducer**)

** The electrical | Transducer
impedance of the P Impedance
transducer is Emulation Cable

included but not ;
its full transfer
function.

B

Sine Wave

For a nice reference Data Acquisition System

discussing this approach, o Sine Sweep Amplitdde Errc
see: =
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Of Their Cables L Assess In-Band *
Patrick Walter, Alan Szary, Perform Sine Sweep from 10*Hz and Out-of-Band 1 O Mt D
James Woernley, 2021, to 10x Max Frequency of Interest Attenuations T e T

Find at www.pcbh.com
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Then We Apply a Desired System Characteristic to Get a
Correction Transfer Function
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Limitations on Transfer Function Corrections

The following realities will limit how much of a
correction you can make. e s
» Discrepancies between TF from analytical models 3 L ol
compared to actual hardware. Additionally, P R R
uncertainty in parameters such as sensor ¢ WeSecsooce
resonance and sensor damping, or cabling £ o i
capacitance and impedance. g : i |EAviegaE
* Numerical issues trying to revive frequency
content squelched by low pass filtering in b by
components of measurement chain. 0 0n 0z s ne 08 06 07T 08 0o
* Tip: Keeping flat pre-trigger data section in Above plot shows accuracy of TF
analysis helps judge when you are pushing correction for ideal accelerometer when
correction to too high a frequency (you will fn and Q of sensor have plausible
see noise rise-up in the pre-trigger section). uncertainties. TF most sensitive to fn

sensor, less sensitive Q of sensor.




We Can Upsample Via Spectrum Padding With Zeroes

4
n—W ‘ Increasing the number of Spectral Lines by Padding
4 -
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Finally, We Convert back to the Time Domain
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Conclusions

* All Measurement Systems Record A Distorted Version Of The Truth.
e Various Components In The System Put In Different Types Of Distortions.
* Using Fourier Analysis, We Can Create Transfer Functions To Represent
Various Components Of The System As Well As The Entire System.
* Do This With Theoretical Models, Measurements, Or Some Combination.
* We Can Therefore Create A Correction Transform That Attempts To Nullify The
Measurement’s Distortions.
* There Are Limitations To The Amount Of Correction That Can Be Made.
* You Should Do Diligent Sanity Checking Of Any Such Corrections That Are
Made.

* These Techniques Allows For Improved And More Consistent Results
Comparisons From Different Laboratories/Experiments (Or Between Transient
FEA Simulations And Physical Tests).
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